Volume and L-betti Numbers of Aspherical Manifolds

نویسندگان

  • ROMAN SAUER
  • Mikhail Gromov
چکیده

We give a leisurely account of the relationship between volume and L2-Betti numbers on closed, aspherical manifolds based on the results in [5] – albeit with a different point of view. This paper grew out of a talk presented at the first colloquium of the Courant Center in Göttingen in October 2007. 1. Review of L-Betti numbers The L-Betti numbers of a closed Riemannian manifold, as introduced by Michael Atiyah, are analytical invariants of the long-time behavior of the heat kernel of the Laplacians of forms on the universal cover. We give a very brief review of these invariants; for extensive information the reader is referred to the standard reference [3]. Let X̃ → X be the universal cover of a compact Riemannian manifold, and let F ⊂ X̃ be a π1(X)-fundamental domain. Then Michael Atiyah defines the i-th L-Betti number in terms of the heat kernel on X̃ as b (2) i (X) = lim t→∞ ∫ F trC e−t∆i(x, x)dvol(x). Subsequently, simplicial and homological definitions of L-Betti numbers were developed by Dodziuk, Farber, and Lück. An important consequence of the equivalence of these definitions is the homotopy invariance of L-Betti numbers. Lück’s definition is based on a dimension function dimA(M) for arbitrary modules M over a finite von Neumann algebra A with trace tr : A → C. For example, one has dimA(Ap) = tr(p). Lück proceeds then to define b i (X) for an arbitrary space X with Γ = π1(X) as (1.1) b i (X) = dimL(Γ)Hi ( L(Γ)⊗ZΓ C∗(X̃) ) ∈ [0,∞] where L(Γ) is the group von Neumann algebra of Γ. Some of the most fundamental properties of L-Betti numbers are: • π1(X) finite ⇒ b i (X) = bi(X̃)/|π1(X)| • ∑ i≥0(−1)b (2) i (X) = χ(X) = ∑ i≥0(−1)bi(X). • X̄ → X d-sheeted cover ⇒ b i (X̄) = d · b (2) i (X). • If X is aspherical and π1(X) amenable then b i (X) = 0. • If X is a 2n-dimensional hyperbolic manifold then b i (X) > 0 if and only if i = n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amenable Covers, Volume and L-betti Numbers of Aspherical Manifolds

We provide a proof for an inequality between volume and LBetti numbers of aspherical manifolds for which Gromov outlined a strategy based on general ideas of Connes. The implementation of that strategy involves measured equivalence relations, Gaboriau’s theory of L-Betti numbers of R-simplicial complexes, and other themes of measurable group theory. Further, we prove new vanishing theorems for ...

متن کامل

“L-invariants of regular coverings of compact manifolds and CW -complexes”

0. Introduction 1. L-Betti numbers for CW -complexes of finite type 2. Basic conjectures 3. Low-dimensional manifolds 4. Aspherical manifolds and amenability 5. Approximating L-Betti numbers by ordinary Betti numbers 6. L-Betti numbers and groups 7. Kähler hyperbolic manifolds 8. Novikov-Shubin invariants 9. L-torsion 10. Algebraic dimension theory of finite von Neumann algebras 11. The zero-in...

متن کامل

Some Examples of Aspherical Symplectic Four-manifolds

We give examples of aspherical symplectic 4-manifolds, which are formal in the sense of rational homotopy theory but have degenerate Lefschetz pairings. (preliminary version) Compact Kähler manifolds have a number of topological properties which are not shared by general symplectic manifolds, see [1] for example. In particular, Kähler manifolds have the following cohomological properties: 1. th...

متن کامل

A Spectral Sequence to Compute L-betti Numbers of Groups and Groupoids Roman Sauer and Andreas Thom

We construct a spectral sequence for L-type cohomology groups of discrete measured groupoids. Based on the spectral sequence, we prove the Hopf-Singer conjecture for aspherical manifolds with poly-surface fundamental groups. More generally, we obtain a permanence result for the Hopf-Singer conjecture under taking fiber bundles whose base space is an aspherical manifold with poly-surface fundame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008